The assessment of climate change mitigation cost is going to be improved. Teams of researchers from twelve countries will run their energy-economy-climate computer models against each other.
Broader fundation needed
The aim is to make the prognoses more informative for policy-makers who want to bring about long-term emission reductions or promote low carbon technology.“Assessments of mitigation cost need a broader foundation,” says Elmar Kriegler from the Potsdam Institute for Climate Impact Research (PIK). He is leading the model comparison project together with PIK’s chief economist Ottmar Edenhofer. “We will analyse in detail how a variety of assumptions – e.g. concerning future climate policy and available mitigation options – affect the mitigation scenarios, their feasibility and cost.”
The first Meeting
Today, Monday Feb.28, the 21 partners from China, India, Japan and nine European countries from Greece to Great Britain are meeting in Potsdam for the first time. The project led by PIK will last three years. It is sponsored under the European Union’s seventh framework programme to a tune of three million euros. Some of the researcher’s simulations run on a simple laptop computer for only a few hours, others require days of calculations on high performance computers – illustrating the large differences between those models. “By comparing these differences, we will turn them into a strength”, Kriegler says.
Four main challenges
Four challenges are to be tackled by the project. (1) Feedbacks in the climate’s reaction to greenhouse gas emissions – for instance the release of methane from thawing permafrost soil – could have considerable impacts on climate change mitigation. The importance of such feedbacks for mitigation strategies will be investigated. (2) The role of individual abatement technologies and the planning horizon of policy makers and the energy sector will be analysed. A key question here is whether - and at what cost - long-term climate protection targets can be achieved with limited technology options and short-term planning horizons. (3) The relevance of fragmented climate policy such as limited regional or sectoral participation in climate policy regimes will be looked into. This issue is currently a major concern for decision-makers - decreasing demand for fossil fuels in some countries or industries will drive down their prices thereby increasing demand in unregulated countries or industries. (4) The implications of decarbonisation scenarios for Europe will be explored. “To achieve the transformation from the fossil fuel era to a low carbon future, decision-makers need this kind of information,” the project’s co-leader Edenhofer says. The scientists named the project AMPERE, the acronym stands for Assessment of Climate Change Mitigation Pathways and Evaluation of Robustness of Mitigation Cost Estimates. “You can already guess at the size of the task from the project’s name”, says Edenhofer.